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Abstract

For a simplicial group K, the realization of the W -construction WK — WK of K is shown
to be naturally homeomorphic to the universal bundle E|K| — B|K| of its geometric realization
|K|. The argument involves certain recursive descriptions of the W-construction and classifying
bundle and relies on the facts that the realization functor carries an action of a simplicial group to
a geometric action of its realization and preserves reduced cones and colimits. (©) 1998 Elsevier
Science B.V. All rights reserved.

AMS Classification: 55Q05; 55P35; 18G30

0. Introduction

Let K be a simplicial group; its realization |K| is a topological group suitably in-
terpreted when K is not countable. The W-construction WK — WK yields a func-
torial universal simplicial principal K-bundle, and the classifying bundle construction
E|K| — B|K] of its geometric realization |K| yields a functorial universal principal
|K|-bundle. The realization of the W -construction also yields a universal principal |K |-
bundle |WK| — |WK]|, by virtue of the general realization result in [26]. In this note
we identify the classifying bundle with the realization of the W-construction. A cryptic
remark about the possible coincidence of the two constructions may be found in the
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introduction to Steenrod’s paper [25] but to our knowledge this has never been made
explicit in the literature.

Spaces are assumed to be compactly generated, and all constructions on spaces are
assumed to be carried out in the compactly generated category. It is in this sense that
the realization |K| is always a topological group; in general, the multiplication map
will be continuous only in the compactly generated refinement of the product topology
on |K| x |K|. For countable K, there is no difference, though. Here is our main result.

Theorem. There is a canonical homeomorphism of principal |K|-bundles between
the realization |WK| — |WK| of the W-construction and the classifying bundle
E\K| — BIK| which is natural in K.

The map from |WK| to E|K| could be viewed as a kind of perturbed geometric
Alexander—Whitney map while the map in the other direction is a kind of perturbed
geometric shuffle map (often referred to as Eilenberg—Zilber map) but this analogy
should not be taken too far.

The classifying space B|K| is the realization of the nerve NK of K as a bisimplicial
set. The latter is homeomorphic to the realization of its diagonal DNK since this is
known to be true for an arbitrary bisimplicial set [20]. The diagonal DNK, in turn,
does not coincide with the reduced W-construction WK, though, but after realization
the two are homeomorphic. We shall spell out the precise relationships in Section 4
below.

Eilenberg—Mac Lane introduced the bar and W-constructions in [6] and showed that,
for any (connected) simplicial algebra A, there is a “reduction” of (the normalized
chain complex of) the reduced W-construction of 4 onto the (reduced normalized) bar
construction B|A4| of the normalized chain algebra 4] of 4 and raised the question
whether this reduction is in fact part of a contraction. By means of homological
perturbation theory, in his “Diplomarbeit” [27] supervised by the second named author,
Wong answered this question by establishing such a contraction. Wong’s basic tool is
the “perturbation lemma” exploited in [8]; see [10] for details and history.

Our result, apart from being interesting in its own right, provides a step towards a
rigorous understanding of lattice gauge theory. See [11] for details. Using the notation
Ky for the Kan group [12] of a reduced simplicial set ¥, at this stage, we only spell
out the following consequence, relevant for what is said in [11].

Corollary. For a reduced simplicial set Y, there is a canonical map from its realization
[Y| to the classifying space B\Ky| of the realization of Ky which is natural in Y and
a homotopy equivalence.

The proof of our main result involves a certain recursive description of the W-
construction which mimics Steenrod’s elegant description of the classifying bundle
[25]. By induction, our argument then reduces to the observation that the realization
functor carries an action of a simplicial group to a geometric action of its realization
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and preserves reduced cones and colimits. It would be interesting to extend the method
of the present paper to simplicial groupoids, so that a result of the kind given in the
corollary would follow for an arbitrary connected simplicial set, with the Kan group
replaced by the Kan groupoid [5]. Such an extension would have to rely on correct
descriptions of the requisite monads for groupoid actions and conical contractions in
the general non-reduced setting. We hope to return to this issue elsewhere.

We are indebted to Jim Stasheff and to the referee for a number of most helpful
comments.

1. The classifying space of a topological group

Let G be a topological group. Its nerve NG [2,3,21] is the simplicial space having in
degree k£ > 0 the constituent NG, = G**, with the standard simplicial operations. The
usual /ean realization BG = [NG| of NG is a classifying space for G, cf. [13,21,24];
there is an analoguous construction of a contractible total space EG together with a
free G-action and projection ¢ onto BG, and this projection is locally trivial provided
(G,e) is an NDR (neighborhood deformation retract) [25]. We note, for completeness,
that the fat realization ||[NG|| yields MiLNor's classifying space [16], and the projection
from the corresponding total space to ||[NG|| is always locally trivial whether or not
(G,e) is an NDR. Below (G, ¢) will always be a CW-pair and hence an NDR, cf. e.g.
the discussion in the appendix to [22], and we shall deal exclusively with the lean
realization BG = |NG|. To reproduce a description thereof, and to introduce notation,
write A for the category of finite ordered sets [¢] = (0,1,...,q), ¢ > 0, and monotone
maps. We recall the standard cofuce and codegeneracy operators

g =11 =gl (O 1eecj—Ljig= D= (01, j~ 1Lj+1.....q)
nilg+11—1gl. (0 1,....j—Lj.,g+ 1) —(0,1,.... j....q)

respectively. As usual, for a simplicial object, the corresponding face and degeneracy
operators will be written ¢; and s;. The assignment to [g] of the standard simplex
Vlgl = 4, yields a cosimplicial space V; here we wish to distinguish clearly in
notation between the cosimplicial space V and the category 4. The lean geometric
realization [NG| is the coend NG% 4V, cf. e.g. [14] for details on this notion. Exploiting
this observation, Mac Lane observed in [13] that NG| coincides with the classifying
space for G constructed by Stasheff [23] and Milgram [15]; see also Section 1 of
Stasheff’s survey paper [24] and Segal’s paper [21]. Mac Lane actually worked with a
variant of the category A which enabled him to handle simultaneously the total space
EG and the base BG.

Steenrod [25] gave a recursive description of |[NG| which we shall subsequently
use. For ease of exposition, following [1], we reproduce it briefly in somewhat more
categorical language. This will occupy the rest of this section.
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For a space X endowed with a G-action ¢: X x G — X, we write § = n$: X — X xG
for the unit given by n(x) = (x,¢). For an arbitrary space Y, right translation of G
induces an obvious free G-action ¢ on ¥ x G. In categorical language [14], the functor
x G and natural transformations p and 5 constitute a monad (XG, i, 1) and a G-action
on a space X is an algebra structure on X over this monad. Sometimes we shall refer
to an action of a topological group on a space as a geometric action.

Let D be any space and £ a subspace endowed with a G-action ¢: E x G — E; the
inclusion of E into D is written f. Recall that the enlargement D D D of the G-action
is characterized by the property: if Y is any G-space, and f any map from D to ¥
whose restriction to £ is a G-mapping, then there exists a unique G-mapping f from
D to Y extending f. The space D then fits into a push out diagram

¢
ExG —— E
/fxldl l (1.1)
D

Dx(G ——

and this provides a construction for D. Moreover, right action of G on D x (G induces
an action

¢:DxG—D (1.2)
of G on D, and the composite
wD —D (1.3)

of the unit #: D — D x G with the map from D x G to D in (1.1) embeds D into
D. When D is based and £ is a based subspace, the products £ x G and D x G
inherit an obvious base point, and the square (1.1) is one in the category of based
spaces whence, in particular, the enlargement D inherits a base point. This notion of
enlargement of G-action is functorial in the appropriate sense. See [25] for details. This
kind of universal construction is available whenever one is given an algebra structure
over a monad preserving push out diagrams.

The unit interval 7 = [0, 1] is a topological monoid under ordinary multiplication
having 1 as its unit, and hence we can talk about an /-action X x I — X on a space
X. Such an /-action is plainly a special kind of homotopy which, for t = 1, is the
identity. In the above categorical spirit, the interval / gives rise to a monad (X7, u,n)
and an /-action on a space X is an algebra structure on X over this monad.

The base point of I is defined to be 0. Following [25], for a based space (X, xg),
we shall refer to an [-action y: X x I — X as a contraction of X (to the base point
xp € X)) provided  sends the base point (x),0) of X x I to x¢ and factors through the
reduced cone or smash product

CX=XNI=XxI/(Xx{0}U{x}x1I)
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that is to say,

Y(x,0) = xo = Y(x0,1)

for all x € X, ¢t € I; the reduced cone will be endowed with the obvious base point,
the image of X x {0} U {xo} x / in CX. Whenever we say “contraction”, we mean
“contraction to a pre-assigned base point”. Abusing notation, the corresponding map
from CX to X will as well be denoted by  and referred to as a contraction. Moreover
we write 7 = n§ for the map, the corresponding unit, which embeds X into CX by
sending a point x of X to (x,1) € CX. The right action of /7 on X x [ induces a
contraction p$: CCX — CX of CX. Again we can express this in categorical language:
the functor C and natural transformations p and 5 constitute a monad and a contraction
of a based space X is an algebra structure on X over this monad or, equivalently, a
C-algebra structure on X. Sometimes we shall refer to a contraction of a space as a
geometric contraction.

Let (£,xy) be any based space and (D,xy) a based subspace endowed with a
contraction : CD — D; the inclusion of D into E is written a. The enlurgement
(E.x0) D(E.xy) of the contraction is characterized by the property: if f is any map
from £ to a space Y having a contraction to some point yy whose restriction to D is
an [-mapping, then there exists a unique /-mapping f from E to ¥ extending f. The
space E then fits into a push out diagram

12
D —— D

ul l (1.4)

CE —— FE
which provides a construction for £. Moreover, the composite
pE—E (1.5)

of the unit #: E — CE with the map from CE to E in (1.4) embeds E into E and
the right action of / on E x [ induces a contraction of CE which, in turn, induces a
contraction

V:CE —~ E (1.6)
of E. This notion of enlargement of contraction is functorial in the appropriate sense.
See [25] for details.

Alternating the above constructions, in [25], Steenrod defines based spaces and in-
jections of based spaces
2 fo 2 Pu—i % B e
()—’)E()*—’D[—’...‘>D,,—+E,,——>D"+|—>... (17)
by induction on » together with contractions ¢,: CD, — D, (Steenrod writes these
contractions as /-actions D, x [ — D,) and G-actions ¢,: £, x G — E, in the following
way: Let Dy consist of the single point ¢ with the obvious contraction. Let £y = G,
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the right action being right translation. Now define (Dj,e) to be the enlargement to
(Egp.e), (Eg,e), of the contraction of (Dy,e); then D, is just the reduced cone on £j.
Define £, to be the enlargement to D, Dy, of the G-action on Ey. In general, D, is
the enlargement to (£,_,¢), (E,_1,e), of the contraction y,_; of (D,_,e) so that D,
fits into a push out square

V-t
CD,y —— D,

cy,,,.l l (1.8)

CE/I——] —_— Dn;

the requisite injection f,_,:E,_1 — D, is the map denoted above by f, cf. (1.5);
and the requisite contraction ,:CD, — D, of (D,,e) or, equivalently, [-action
W, D, x I — D, is the map denoted above by J, cf. (1.6). Likewise, E, is the
enlargement to D,, D,, of the G-action ¢, on E,_,, so that E, fits into a push out
square
Pr—1
E, g xG — E,_

/f,,,\xldl l (1.9)
Dn xG — En;

the requisite G-action ¢,,: £, x G — E, and injection %,: D, — E, are the action denoted
above by ¢, cf. (1.2), and the map denoted above by =, cf. (1.3), respectively. Consider
the union

> >
Eg = UE)I = UDm
n=0

n=0

endowed with the weak topology. Since each E, (and each D,) carries the compactly
generated topology, so does Eg. Furthermore, the compactly generated product being
taken, the space E inherits a (continuous) G-action ¢: Eg x G — E¢ and a (contin-
uous) contraction ¥: CE; — Eg from the ¢,’s and s, respectively. The G-action is
free, and the orbit space BG = E;/G equals the lean geometric realization [NG| of
the nerve of G. This is Steenrod’s result in [25].

2. The recursive description of the W -construction

In [1], the first named author observed that the W -construction admits a recursive
description of formally the same kind as (1.7) above, except that it is carried out in
the category of based simplicial sets. This is among the key points of the paper. We
shall explain it now. To elucidate the analogy between the two constructions, we first
spell out the simplicial monads for group actions and conical contractions.

Let K be a simplicial group. Let ¢ denote the trivial simplicial group viewed at
the same time as the simplicial point. For a simplicial set X endowed with a K-action
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$: X xK — X, we write 1 = ph: X — X x K for the unit of the action; in each degree,
it is given by n(x) = (x,e). Given an arbitrary stmplicial set Y, right translation of K
induces an obvious action i of K on Y x K. Much as before, in categorical language,
the functor xK and natural transformations p and 5 constitute a monad (XK, n)
in the category of simplicial sets and a K-action on a simplicial set X is an algebra
structure on X over this monad. Moreover realization preserves monad and algebra
structures. In other words: the realization of a K-action ¢: X x K — X on a simplicial
set X is a geometric action |¢|: |[X| X |K| — |X| in the usual sense. Notice this involves
the standard homeomorphism [17] between the realization |[X x K| of the simplicial
set X x K and the product |X| x |K| of the realizations (with the compactly generated
topology). The homeomorphism between |X x K| and |X| x |K]| is of course natural and
relies on the fact that, for an arbitrary bisimplicial set, the realization of the diagonal is
homeomorphic to the realization as a bisimplicial set, cf. [20, Lemma on p. 86]. Note,
however, that the simplicial CW-structure of the realization of X x K arises from the
product CW-structure of |[X| x [K| only after suitable subdivision thereof [19, Satz 5,
p. 388]. This reflects, of course, precisely the decomposition coming into play in the
Eilenberg—Zilber map.

Recall that in the category of simplicial sets there are fwo natural (reduced) cone
constructions. The first one is defined by the simplicial smash product with the standard
simplicial model A[1] of the unit interval. We shall say more about this in Section 4
below. The recursive description of the W -construction crucially involves the second
somewhat more economical cone construction which relies on the observation that an
(n+1)-simplex serves as a cone on an r-simplex. We reproduce this cone construction
briefly; it differs from the one given in [4, p. 113] by the order of face and degeneracy
operators; our convention is forced here by our description of the W -construction with
structure group acting from the right, cf. what is said in (2.6) below.

Let X be a simplicial set. For j > 0, we shall need countably many disjoint copies
of each X; which we describe in the following way: For j > 0, consider the cartesian
product X; x N with the natural numbers N. Let o be a point which we formally assign
dimension —1 and, given / € N, write X_(i) = {(0,i)} so that each X_ (i) consists
of a single element; next, for j > 0, let X;(i) = X; x {i}. The unreduced simplicial
cone CX on X is given by

(CX)y = X,(0)U...UXo(n)UX_(n+1), n>0,

with face and degeneracy operators given by the formulas

. (d,x,l), _] S n— ia
dixiy=1 ¢
i 1) {(x,i-l), J>n—1i

i N (S/-x,i), J<n—i
”“”‘{u¢+u J>n—i.

Notice that in these formulas » — i = dimx; in particular,

di(o,n+ 1) = (o,n), si(o,n) = (o,n + 1), 0<j<n.
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Let now (X,*) be a based simplicial set. The unreduced simplicial cone 6{*} of
the simplicial point {x} is the simplicial interval, and the reduced simplicial cone CX
is simply the quotient

CX = CX/C{}.

For each n > 0, its constituent (CX ), arises from the union X,(0) U ... U Xp(n) by
identifying all (*,i) to a single point written *, the base point of CX. The non-
degenerate simplices of CX different from the base point look like (x,0) and (x,1)
where x runs through non-degenerate simplices of X. We write 1 = #5: X — CX
for the wunit induced by the assignment to x € X, of (x,0) € X,(0). A (simplicial)
contraction is, then, a morphism y: CX — X of based simplicial sets satisfying

WYoon=Idy.
The cone CX itself admits the obvious contraction
p=p5:CCX — CX,  ((x,i),j) — (5,0 + ).
A contraction  is called conical provided

YoCy=yopu

We note that a geometric contraction in the sense of Section 1 above, being defined
as an action of the associative monoid /, automatically satisfies the usual associativity
law for an action. Under the present circumstances, the property of being conical
corresponds to this associativity property. The contraction u§ of CX is conical; in
categorical terms, the triple (C, 1, 1) is a monad in the category of simplicial sets, and
a conical contraction is an algebra structure in the category of simplicial sets over this
monad, referred to henceforth as C-algebra structure on X.

We now have the machinery in place to reproduce the crucial recursive description
the W-construction: Define based simplicial sets and injections of based simplicial sets

Ay /fn Ay /5u —1 A /f,, K1
Dy —FE—D —...—D, — E, — Dyy1—— ... (2.1)

by induction on » together with conical contractions ,: CD, — D, and K-actions
¢n: Ey x K — E, on each E, from the right in the following way: Let Dy = e, with
the obvious conical contraction iy, let £y = K, viewed as a based simplicial set in the
obvious way, the right action ¢ being translation, and let 2 be the obvious morphism
of based simplicial sets from Dg to Ey. For n > 1, define (D,, e) to be the enlargement
to (E,_1,e) of the contraction V,_: CD,_, — D,_, that is, D, is characterized by the
requirement that the diagram

i1
CD,_y —— D, _;

Con l J (22)

CEn—l — Dn
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be a push out square of (based) simplicial sets; the composite of the unit  from £,_; to
CE,_) with the morphism CFE,_, — D, of simplicial sets in (2.2) yields the requisite
injection f3,i:E,-1 — D,, and the contraction ¥4,_; and the conical contraction of
CE,_ induce a conical contraction ¥,: CD, — D,. Likewise, £, is the enlargement to
D, of the K-action ¢,_; on FE,_, that is, E, is characterized by a push out square of
based simplicial sets of the kind
P -
Eu-—] x K “—;’ Enfl
/J,,,\xldJV J’ (2.3)
Dy xK —— E;

the requisite K-action ¢,: E, x K — E, is induced by ¢,_; and the obvious K -action
on D, x K, and the requisite injection a,:D, — E, is the composite of the unit with
the morphism D, x K — E, of simplicial sets in (2.3). The limit

WK = limE, =limD,
inherits a K-action ¢: WK x K — WK and conical contraction ¢: CWK — WK from

the ¢,’s and ,’s, respectively. The K-action is free, and the projection map to the
quotient WK = WK/K yields the universal simplicial K-bundle

WK — WK

or W-construction of K, cf. [1], with action of K from the right.
For intelligibility, we explain some of the requisite details: A straightforward induc-
tion establishes the following descriptions of the simplicial sets D; and E:

(D )n = {0 ko, ivskise o k—1,i) | 0 </ <k, iy >0,
n=ip+...+i, ki €Kiy 4, 0<s < /}/ ~,

(Exn = {Go. ko iy kis. ks i k) | 0 <6 <k, iy >0,
n=ig+...+is, ki €Ki 1, 0<s< Y/~

where
(i @lorg, o)~ Codo Figrrs )y ook, Ok, o) ~ (oo kko, ..
Thus, for n > 0,
(WK Yy = {(kjpukjys. . k) | 0<jo < ... < j,=n and
ki €Ki \ey, 0<s </, k;, €K, }.

From this, adding the requisite neutral elements wherever appropriate, we deduce the
following more common explicit description: For n > 0,

(WK)II :KO X XK,,,
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with face and degeneracy operators given by the formulas

d()(XO,...,X"): (d()xl,...,d().\’,,).
di(x0,...,Xg) = (Xo,.... X, 2. d X dixpp, . dpxg), 1< j <, (2.4)

Si(x0y. 5 X)) = (X050 X, €S X S X, 85X,), 0 < <o
further, (WK )y = {e} and, for n > 1,
(WK)H = KO XX Kn—la

with face and degeneracy operators given by the formulas

do(xo,..., Xp—1) = (dox1.....dox,_1),
di(x0, ... s Xy—1) = (X0, ... Xj—2, X,y dxj dixjr. o dxey), 1<j<n—1,
d,,(XQ,...,xnfl):(X(),...,X”;Q), (25)

soe) = e € Ky,

Sj()C(),...,x,,,l): ()C(),...,xi_l,C,~S'I/Xj,b'>/)§/ﬁ 1,...,ij,,,|), 0 gj < n.

Remark 2.6. Here preferred treatment is given to the last face operator, as is done
in [9,12]. This turns out to be the appropriate thing to do for principal bundles with
structure group acting on the total space from the right and simplifies comparison
with the bar construction. See for example what is said on p. 75 of [9]. The formulas
(2.4) and (2.5) arise from those given in (A.14) of [9] for a simplicial algebra by
the obvious translation to the corresponding formulas for a simplicial monoid; they
differ from those in [4, pp. 136 and 161] where the constructions are carried out with
structure group acting from the /left.

3. The proof of the theorem

The realization of a conical contraction 1y: CX — X of a based simplicial set (X, xg)
is a geometric contraction |Y|: C|X| — |X| in the sense reproduced in Section 1 above.
In fact, the association

(Jxl(t0, - - ) ) —= (J(x, Dl ... et 1 —8),  x €X,, n >0,

yields a homeomorphism from the reduced cone C|X| on the realization |X| to the
realization |CX| of the cone and, furthermore, the realizations of the unit # and C-
algebra structure pu§: CCX — CX yield the geometric unit |[X| — C|X| and geometric
C-algebra structure uﬁ(.: CC|X| — C|X]|, that is, the realization preserves monad- and
C-algebra structures.

The proof of the theorem is now merely an elaboration of the observation that the
realization functor |-| carries an action of a simplicial group to a geometric action of its
realization, preserves reduced cones and, having a right adjoint (the singular complex
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functor), also preserves colimits. In fact, denote the corresponding sequence (1.7) of
based topological spaces for the realization |K| by

K| Folkl K fulK| 51 K]
Do|K|——Eo|K|—— ...~ Ey|K |~ — Dy [K|—— . .. (3.1)

and, likewise, write

10K BuK 2, K K L1 K
Dok pk 2 2 E k"D, K . (3.2)

for the corresponding sequence (2.1) in the category of based simplicial sets. Realiza-
tion carries the sequence (3.2) to the sequence

[ K | [BuK| [%,K| [BuK| |2, K|
DOK | EoK | 2 B K | Dy K (33)

of based topological spaces. Now

D()‘K‘ =€ = |DOK

. EolK| = K[ = |EoK],
and the map x%|K| = |%yK| is the canonical inclusion. Let
Tg- D()’K’ — JD()K’ and o E()|K| — |E()K|

be the identity mappings. Let #n > 1 and suppose by induction that homeomorphisms

>

1, Dj|K| — |D;K| and p; Ej|K| — |EK

each p; being |K|-equivariant, have been constructed for j < s, having the following
properties:
(1) The diagrams

i1 1K) %K

E;i|K]| Dj|K| DjlK| £5|K|

ST PR B
V;/f?K' |’1/K|

|E; -1 K| —— |DK| DK| —— |EK|

are commutative;

(2) each 1, identifies the realization K |: [CD;K| — |D;K| of the conical contraction
Y K: CD;K — D;K of simplicial sets with the geometric contraction ¥|K|: CD;|K| —
D;|K;

(3) each p; identifies the realization |¢;K|: [(£,K) x K| — |E;K| of the simplicial
K-action ¢,K: (E;K)xK — E;K with the topological |K|-action ¢;|K|:(E;|K]|)x|K| —
EjIK].

Consider the realization of (2.2); it is a push out square of topological spaces.
Hence the maps 7,_y and p,_; induce a map 1, from D,|K| to |D,K|, necessar-
ily a homeomorphism, so that C|t,_],|t,—1],C|ps—1| and |t,| yield a homeomor-
phism of squares between the realization of (2.2) and (1.8), where (1.8) is taken
with reference to G = |K|. Moreover, the homeomorphism 7, identifies the realization
|ynK|:|CD,K| — |D,K| of the conical contraction ¥,K:CD,K — D,K of simplicial
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sets with the contraction y;|K|: CD,|K| — D,|K|. Likewise the maps p,_; and 7, in-
duce a map p, from E,|K| to |E,K|, necessarily a |K|-equivariant homeomorphism,
so that |p,—1 X Idk|,|pn=1],|Ts X I1dk| and |p,| yield a homeomorphism of squares be-
tween the realization of (2.3) and (1.9), where (1.9) is understood with reference to
G = |K|. Moreover, the homeomorphism p,, is |K|-equivariant and identifies the real-
ization |¢,K|: |[(E,K)x K| — |E,K| of the simplicial K-action ¢,K:(E,K)x K — E,K
with the topological |K|-action ¢,|K|:(E,|K]|) x |K| — E,|K|. The requisite diagrams
(3.4) for j = n are manifestly commutative. This completes the inductive step.
The limit

p =limp, = limz,: E|K| — |WK]|

is a |K|-equivariant homeomorphism; it identifies the principal |K|-bundles E|K| —
BIK| and |WK| — |WK]| as asserted and is plainly natural in K. This proves the
theorem. [

4. The other cone construction

The classifying space B|K| is homeomorphic to the realization of the nerve NK of
K as a bisimplicial set. (With reference to their obvious CW-structures, the two spaces
are not isomorphic as CW-complexes, though.) On the other hand, the diagonal DNK is
a simplicial set which does not coincide with the reduced W -construction WK, but its
realization is homeomorphic to the realization of the nerve NK of K as a bisimplicial
set since this is known to be true for an arbitrary bisimplicial set [20]. The purpose of
this section is to clarify the relationships between the various spaces and constructions.

As already pointed out, the construction (2.1) can be carried out with the simplicial
smash product () A A[1] instead of the reduced cone: The simplicial interval A[1]
carries a (unique) structure of a simplicial monoid having (1) as its unit, and hence
we can talk about an action X x A[1] — X of A[l] on a simplicial set X; such an
action is a special kind of simplicial homotopy which “ends” at the identity morphism
of X. The fact that the naive notion of homotopy of morphisms of simplicial sets is
not an equivalence relation is not of significance here. Much as before, the simplicial
interval A[1] gives rise to a monad (xA[1], it,x) in the category of simplicial sets and
an action of A[1] on a simplicial set X is an aflgebra structure on X over this monad.

The base point of A[1] is defined to be (0). For a based simplicial set (X,xq), we
shall refer to an action y: X x A[1] — X as a A[l]-contraction of X provided
sends the base point (xg,0) of X x A[1] to xo and factors through the simplicial smash
product

X AA[] =X x A[1/(X x {0} U {xo} x A[1]).

The latter is viewed endowed with the obvious base point, the image of X x {0} U
{xo} x A[1] in X A A[1]. Abusing notation, the corresponding map from X A 4[1] to
X will as well be denoted by ¥ and referred to as a A[l)-contraction. Moreover we
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write 1 = r]f\',[” for the map, the corresponding unit, which embeds X into X A 4[1] by
sending a simplex x of X to (x,1) € X A 4[1]. The right action of A[1] on X x A[1]
induces a A[l]-contraction

X A AL A 4[] — X A 4[]

of X A A[1]. In categorical language, the functor (-) A A[1] and natural transformations
u and # constitute a monad in the category of simplicial sets, and a A[l]-contraction
of a based simplicial set X is an algebra structure on X over this monad.

Formally carrying out the construction (2.1) with the simplicial smash product
(-) A 4[1] instead of the reduced cone we obtain the diagram

’ 7 I ’ ’ 7/ !
%, P X B %, 8 Zy

Dy — Ej) — D} — ...— D!, — E, 5 D, —— ... (4.1)

of based simplicial sets and injections of based simplicial sets together with A[1]-
contractions : D, A A[1] — D}, and free K-actions ¢;: E, x K — E}. Its limit

n

D =lim£, =lim D,

inherits a A{1]-contraction ¥': D A A[1] — D and a free K-action ¢':D x K — D. To
explain the significance thereof, recall that the nerve construction yields a simplicial
object

K — ENK — NK (4.2)

in the category of principal simplicial K-bundles which is natural for morphisms of
simplicial groups. Here £ENK and NK inherit structures of bisimplicial sets, one from
the nerve construction and the other one from the simplicial structure of K, and the
projection from ENK to NK is a morphism of bisimplicial sets; further, for each sim-
plicial degree g > 0 coming from the nerve construction, (4.2) amounts to a principal
K-bundle

K* — (ENK)*q - (NK)*l]

while for each simplicial degree p > 0 of K = {K,} itself, (4.2) comes down to the
universal simplicial principal K ,-bundle

K, = (ENK),. — (NK)p.

in particular, each (ENK),. is contractible in the usual sense. The diagonal bundle
o: DENK — DNK

1s manifestly a principal K-bundle having DENK contractible, and we have
DENK = IEnE; = li_rpr,

as (right) K-set; moreover, the above morphism y': DENK A A[1] — DENK induces a
simplicial contraction of DENK.
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Theorem 4.3. There is a canonical homeomorphism of principal |K|-bundles between
the realization \DENK| — |DNK| of the diagonal bundle and the realization
|WK| — |WK| of the W-construction which is natural in K.

Proof. The classifying space B|K| is the realization of NK as a bisimplicial set, and the
same kind of remark applies to E|K| and the projection to B|K|. The already cited fact
that, for an arbitrary bisimplicial sct, the realization of the diagonal is homeomorphic
to the realization as a bisimplicial set [20] implies the following statement.

Theorem 4.4. There is a canonical |\K|-equivariant homeomorphism between |DENK
and E\K| and hence ua canonical homeomorphism between |DNK| and B|K|. These
homeomorphisms are natural in K.

We conclude from this that the statement of the Theorem (in the Introduction)
is formally equivalent to the statement of (4.3). In fact, the Theorem identifies the
realization of the W -construction with the realization of the nerve as a bisimplicial set
whereas (4.3) identifies the realization of th¢ W-construction with the realization of
the diagonal of the nerve.

Remark 1. While the statement of (4.4) is obtained for free, the identifications just
mentioned, in turn, are not obtained for free, as we have shown in this paper.

Remark 2. For a based simplicial set (X, =), the realization |CX| of the cone CX is
naturally homeomorphic to the realization |[X A A[1]] of X A 4[1]. In fact, a suitable
subdivision of |CX| yields a realization of X A A[1]. It is tempting to try to construct
a homeomorphism between |[DENK| and |WK]| in a combinatorial way by inductively
constructing the requisite maps between the realizations of the constituents of (4.1) and
of the corresponding terms in (2.1) but we did not succeed in so doing. The problem
is that the realization of the simplicial monoid A[1] does not yield the geometric
monoid structure on the interval / coming into play in Section 1 above, whence the
realization of an action X x A[1] — X of A[l] on a simplicial set X is not an /-
action on the realization of X in the sense of Section 1. Rather, the realization of the
simplicial monoid structure on A[1] yields thc function from / x [ to / which sends
(a,b) to min(a,b). A suitable homeomorphism identifies this monoid structure with
the more usual one considered in Section 1 above. For example, as pointed out by
the referee, one could take the function which assigns (a max(a, b), bmax(a, b)) € I?
to (a,b) € I?. Further, the monoid structure arising from the function min also gives
rise to a monad in the category of spaces and with reference to it, the construction
(1.7) can still be carried out; formally the same argument as that for the proof of our
main result then identifies the limit (say) LK of the resulting sequence of spaces with
the realization |DNK| of DNK and, by virtue of (4.4), LK is naturally homeomorphic
to B|K|. However we do not sec how this homcomorphism may be obtained directly
since we are unable to identify the monad in the category of spaces arising from the
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unit interval having the usual multiplication as monoid structure with the other monad
arising from the function min as monoid structure.

References

[1] C. Berger, Une version cflective du théoreme de Hurewicz, These de doctorat. Universit¢ de Grenoble,
1991.

[2] R. Bott, On the Chern—Wecil homomorphism and the continuous cohomology of Lie groups. Adv. in:
Math. 11 (1973) 289-303.

{3} R. Bott, H. Shulman, J.D. Stasheff. On the de Rham theory of certain classifying spaces, Adv. in: Math.
20 (1976) 43-56.

|41 E.B. Curtis, Simplicial homotopy theory, Adv. in: Math. 6 (1971) 107-209.

[5] W.G. Dwyer, D.M. Kan, Homotopy theory and simplicial groupoids, Indag. Math. 46 (1984) 379-385.

[6] S. Eilenberg, S. Mac Lane, On the groups H(m, n). ., Ann. Math. 58 (1953) 55-106.

[71 S. Eilenberg, S. Mac Lanc, On the groups H(m. n). Il. Methods of computation, Ann. Math. 60 (1954)
49-139.

[8] V.K.A.M. Gugenheim, On the chain complex of a fibration, Illinois J. Math. 16 (1972) 398-414.

[9] V.K.A.M. Gugenheim, J.P. May, On the theory and applications of differential torsion products, Mem.
Amer. Math. Soc. 142 (1974).

[10] J. Hucbschmann, T. Kadeishvili, Small modcls for chain algebras, Math. Z. 207 (1991) 245-280.

{117 J. Huecbschmann, Extended moduli spaces, Kan construction. and lattice gauge theory, Topology, to
appear.

[12] D.M. Kan, On homotopy thcory and c.s.s. groups, Ann. Math. 68 (1958) 38-53.

[13] S. Mac Lane, Milgram’s classifying space as a tensor product of functors, in: F.P. Peterson (Ed.). The
Steenrod Algebra and its Applications, Leeture Notes in Mathematics, vol. 168, Springer, Berlin, 1970,
pp. 135-152.

[14] S. Mac Lane, Categories for the Working Mathematician, Graduate Texts in Mathematics, vol. S,

Springer, Berlin, 1971.

51 J. Milgram. The bar construction and abelian H-spaces. Illinois J. Math. 11 (1967) 242-250.

6] J. Milnor, Construction of universal bundles. 1, II, Ann. Math. 63 (1956) 272-284, 430-436.

7] J. Milnor, The realization of a semi-simplicial complex, Ann. Math. 65 (1957) 357-362.

8] J. Moore. Comparison de la bar construction a la construction # et aux complexes K(n.17). Exposé

13, Seminaire H. Cartan (1954/1955) 242-250.

[19] D. Puppe, Homotopie und Homologie in abelschen Gruppen und Monoidkomplexen. 1. 1, Math. Z. 68
(1958) 367-406, 407-421.

120] D. Quillen, Higher algebraic K-theory, | in: H. Bass (Ed.), Algebraic K-theory I. Higher K-theories.
Lecture Notes in Mathematics, vol. 341, Springer, Berlin, 1973, pp. 85-147.

[21] G.B. Segal. Classifying spaces and spectral sequences, Publ. Math. LH.E.S. 34 (1968) 105-]12.

[22] G.B. Segal. Catcgories and cohomology theories, Topology 13 (1974) 293-312.

[23] 1.D. Stashefl. Homotopy associativity of H-spaces. . 1l, Trans. Amer. Math. Soc. 108 (1963) 275-292,
293-312.

[24] J.D. Stashell, H-spaces and classifying spaces: foundations and recent deveclopments, in: Proc. Symp.
Pure Math.. vol. 22 American Math. Soc.. Providence, RI. 1971, pp. 247-272.

[25} N.E. Steenrod. Milgram’s classitying space of a topological group. Topology 7 (1968) 349-368.

[26] S. Weingram. The realization of a semisimplicial bundle map is a k-bundle map, Trans. Amer. Math.
Soc. 127 (1967) 495-514.

[27] S.-C. Wong, Comparison between the reduced bar construction and the reduced W -construction,
Diplomarbeit. Math. [nstitut der Universitdt Heidelberg, 1985.



