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Abstract 

For a simplicial group K, the realization of the W-construction WK + WK of K is shown 
to be naturally homeomorphic to the universal bundle E]K] --t BIK of its geometric realization 
]Kl. The argument involves certain recursive descriptions of the W-construction and classifying 
bundle and relies on the facts that the realization functor carries an action of a simplicial group to 
a geometric action of its realization and preserves reduced cones and colimits. @ 1998 Elsevier 
Science B.V. All rights reserved. 

AMS Cluss$ccrrior~: 55405; 55P35; I8G30 

0. Introduction 

Let K be a simplicial group; its realization 1Kl is a topological group suitably in- 

terpreted when K is not countable. The W-construction WK + WK yields a func- 

torial universal simplicial principal K-bundle, and the classifying bundle construction 

EIKI + BIKI of its geometric realization (Kl yields a functorial universal principal 

JKI-bundle. The realization of the W-construction also yields a universal principal IKI- 

bundle / WKI + IWKI, by virtue of the general realization result in [26]. In this note 

we identify the classifying bundle with the realization of the W-construction. A cryptic 

remark about the possible coincidence of the two constructions may be found in the 
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introduction to Steenrod’s paper [25] but to our knowledge this has never been made 

explicit in the literature. 

Spaces are assumed to be compactly generated, and all constructions on spaces are 

assumed to be carried out in the compactly generated category. It is in this sense that 

the realization (K( is always a topological group; in general, the multiplication map 

will be continuous only in the compactly generated refinement of the product topology 

on IK] x lK1. For countable K, there is no difference, though. Here is our main result. 

Theorem. There is u ctrno~~ic~al hor~lronlo,-l~hi.snl oj’ principul /K (-bundles hetwwn 

the realization ( WKI + IWK / of’ the W-c’onstrwtion and the cluss~jjky bundle 

EIKI + B(KI which is nutural itz K. 

The map from 1 WK( to EIKI could be viewed as a kind of perturbed geometric 

Alexander-Whitney map while the map in the other direction is a kind of perturbed 

geometric shuffle map (often referred to as EilenberggZilber map) but this analogy 

should not be taken too far. 

The classifying space BlKl is the realization of the nerve NK of K as a bisimpliciul 

set. The latter is homeomorphic to the realization of its diuyonul DNK since this is 

known to be true for an arbitrary bisimplicial set [20]. The diagonal DNK, in turn, 

does not coincide with the reduced W-construction WK, though, but after realization 

the two are homeomorphic. We shall spell out the precise relationships in Section 4 

below. 

Eilenberg-Mac Lane introduced the bar and W-constructions in [6] and showed that, 

for any (connected) simplicial algebra A, there is a “reduction” of (the normalized 

chain complex of) the reduced W-construction of A onto the (reduced normalized) bar 

construction BlAl of the normalized chain algebra IAl of A and raised the question 

whether this reduction is in fact part of a contraction. By means of homological 

perturbation theory, in his “Diplomarbeit” [27] supervised by the second named author, 

Wong answered this question by establishing such a contraction. Wong’s basic tool is 

the “perturbation lemma” exploited in [8]; see [IO] for details and history. 

Our result, apart from being interesting in its own right, provides a step towards a 

rigorous understanding of lattice gauge theory. See [ 11) for details. Using the notation 

KY for the Kan group [12] of a reduced simplicial set Y, at this stage, we only spell 

out the following consequence, relevant for what is said in [I 11. 

Corollary. For u wduccd sit~~plicirrl .sct Y. thrw is u cunonicul rnup .ficrm its reulizution 

1 Y I to the cluss~j~~~in’ing sptrw B(K) / of’ the wulizution of KY \thich is nuturul in Y und 

u hornotopy ryuivuknce. 

The proof of our main result involves a certain recursive description of the W- 

construction which mimics Steenrod’s elegant description of the classifying bundle 

[25]. By induction, our argument then reduces to the observation that the realization 

functor carries an action of a simplicial group to a geometric action of its realization 



and preserves reduced cones and colimits. It would be interesting to extend the method 

of the present paper to simplicial groupoids, so that a result of the kind given in the 

corollary would follow for an arbitrary connected simplicial set, with the Kan group 

replaced by the Kan groupoid [5]. Such an extension would have to rely on correct 

descriptions of the requisite monads for groupoid actions and conical contractions in 

the general non-reduced setting. We hope to return to this issue elsewhere. 

We are indebted to Jim Stasheff and to the referee for a number of most helpful 

comments. 

1. The classifying space of a topological group 

Let G be a topological group. Its rwrw NC [2,3,2 l] is the simplicial space having in 

degree k > 0 the constituent NGI, = G’“, with the standard simplicial operations. The 

usual kcun realization BG = INGI of NC is a classifying space for G, cf. [ 13,21,24]; 

there is an analoguous construction of a contractible total space EC together with a 

free G-action and projection < onto BG, and this projection is locally trivial provided 

(G, e) is an NDR (neighborhood deformation retract) [25]. We note, for completeness, 

that the,firt realization I]NG(] yields MILNOR.S classifying space [ 161, and the projection 

from the corresponding total space to IINGII is always locally trivial whether or not 

(G, e) is an NDR. Below (G, e) will always be a CW-pair and hence an NDR, cf. e.g. 

the discussion in the appendix to [22], and we shall deal exclusively with the lean 

realization BG = INGI. To reproduce a description thereof, and to introduce notation, 

write d for the category of finite ordered sets [q] = (0, 1,. . . q), q > 0, and monotone 

maps. We recall the standard UI@Y and coclryeneracj~ operators 

E’:[q-l]+[q], (O,l,..., j-1,j ,..., q-l)++(O,l,..., j-l,j+l,..., q), 

II’: [q + 11 --f [ql, CO,1 ,..., j- l,j, . . . . qf l)++ (O,],..., j,j ,..., q), 

respectively. As usual, for a simplicial object, the corresponding face and degeneracy 

operators will be written dj and s,. The assignment to [q] of the standard simplex 

O[q] = A, yields a cosimpliciul space V; here we wish to distinguish clearly in 

notation between the cosimplicial space D and the category A. The lean geometric 

realization ING] is the cornd NG@AD, cf. e.g. [ 141 for details on this notion. Exploiting 

this observation, Mac Lane observed in [ 131 that ING] coincides with the classifying 

space for G constructed by Stasheff [23] and Milgram [15]; see also Section 1 of 

Stashefl’s survey paper [24] and Segal’s paper [21]. Mac Lane actually worked with a 

variant of the category d which enabled him to handle simultaneously the total space 

EC and the base BG. 

Steenrod [25] gave a recursive description of ING] which we shall subsequently 

use. For ease of exposition, following [l], we reproduce it briefly in somewhat more 

categorical language. This will occupy the rest of this section. 



For a space X endowed with a G-action 4: X x G 4 X, we write y = ‘I$: X --f Xx G 

for the unit given by q(x) = (x,e). For an arbitrary space Y, right translation of G 

induces an obvious free G-action /L on Y x G. In categorical language [ 141, the functor 

x G and natural transformations /I and q constitute a mnud (X G, I*, q) and a G-action 

on a space X is an u!yehra structure on X over this monad. Sometimes we shall refer 

to an action of a topological group on a space as a geometric action. 

Let D be any space and E a subspace endowed with a G-action 4: E x G + E; the 

inclusion of E into D is written [j. Recall that the rnlurgenmt D > D of the G-action 

is characterized by the property: if Y is any G-space, and ,f‘ any map from D to Y 

whose restriction to E is a G-mapping, then there exists a unique G-mapping 7 from 

D to Y extending j’. The space D then fits into a push out diagram 

dJ 
ExG- E 

(1.1) 

and this provides a construction for 0. Moreover, right action of G on D x G induces 

an action 

of G on 0, and the composite 

(1.2) 

(1.3) 

of the unit q: D + D x G with the map from D x G to D in (1.1) embeds D into 

0. When D is based and E is a based subspace, the products E x G and D x G 

inherit an obvious base point, and the square (I .I ) is one in the category of based 

spaces whence, in particular, the enlargement D inherits a base point. This notion of 

enlargement of G-action is functorial in the appropriate sense. See [2.5] for details. This 

kind of universal construction is available whenever one is given an algebra structure 

over a monad preserving push out diagrams. 

The unit interval I = [0, I] is a topological monoid under ordinary multiplication 

having 1 as its unit, and hence we can talk about an l-action X x I +X on a space 

X. Such an l-action is plainly a special kind of homotopy which, for t = 1, is the 

identity. In the above categorical spirit, the interval I gives rise to a monad (xl, p, 11) 

and an l-action on a space X is an dgehru structure on X over this monad. 

The base point of 1 is defined to be 0. Following [25], for a based space (X,x0), 

we shall refer to an Z-action $:X x I + X as a contraction of X (to thr base point 

x0 g X) provided $ sends the base point (Q, 0) of X x I to x0 and factors through the 

reduced cone or smush product 

cx =x A / =x x I/(X x (0) u {X(j) x I) 



that is to say, 

$(_x, 0) = .“r(J = $(X”, t) 

for all .Y E X_ t E I; the reduced cone will be endowed with the obvious base point, 

the image of X x (0) U {xg} x I in CX. Whenever we say “contraction”, we mean 

“contraction to a pre-assigned base point”. Abusing notation, the corresponding map 

from CX to X will as well be denoted by I/J and referred to as a c’ontruction. Moreover 

we write 11 = 11:: for the map. the corresponding unit, which embeds X into CX by 

sending a point x of X to (_x, 1) t CX. The right action of I on X x I induces a 

contraction ,D$: CCX + CX of CX. Again we can express this in categorical language: 

the functor C and natural transformations 11 and ~1 constitute a tmnud and a contraction 

of a based space X is an u/~qrhra structure on X over this monad or, equivalently, a 

C-rrl~~rhl-u structure on X. Sometimes we shall refer to a contraction of a space as a 

pnmrttYc contraction. 

Let (E,.Q) be any based space and (D,,Q) a based subspace endowed with a 

contraction $1 CD -+ D; the inclusion of D into E is written a. The ~~~l~r~~~~~~~t 

(E.x(j) >(E_Yo) of the contraction is characterized by the property: if ,f’ is any map 

from E to a space Y having a contraction to some point ~‘0 whose restriction to D is 

an I-mapping, then there exists a unique I-mapping 7 from ?? to Y extending ,I‘. The 

space ?? then fits into a push out diagram 

C‘r 1 1 (1.4) 

CE - E 

which provides a construction for ??. Moreover, the composite 

- 
p:E + E (1.5) 

of the unit ‘I: E 4 CE with the map from CE to E in (1.4) embeds E into E and 

the right action of / on E x I induces a contraction of CE which, in turn, induces a 

contraction 

$:CE+E (1.6) 

of j?. This notion of enlargement of contraction is functorial in the appropriate sense. 

See [25] for details. 

Alternating the above constructions, in [25], Steenrod defines based spaces and in- 

jections of based spaces 

by induction on n together with contractions 4,: CD,, + D,, (Steenrod writes these 

contractions as /-actions D,, x I + D,,) and G-actions 4,,: E,, x G --f E,, in the following 

way: Let Do consist of the single point r with the obvious contraction. Let Eo = G, 



the right action being right translation. Now define (Dt,e) to be the enlargement to 

(I&e), (Eo,e), of the contraction of (Da,r); then DI is just the reduced cone on Eo. 

Define Et to be the enlargement to DI, 01, of the G-action on Ea. In general, D,, is 

the enlargement to (E,,_t,e), (E,,_l,r), of the contraction $,,_I of (D,,_t,e) so that D,, 

fits into a push out square 

$,>-I 
CD,,- I __i &I 

c?L I 
.1 .1 (1.8) 

W-1 _i D,,; 

the requisite injection /I,,_, : E,,_l 4 D,, is the map denoted above by [j, cf. (1.5); 

and the requisite contraction $,, : CD,, + D,, of (D,,,e) or, equivalently, I-action 

*,/,I : D,, x 1 + D,, is the map denoted above by $, cf. (1.6). Likewise, E,, is the 

enlargement to D,,, o,,, of the G-action &I on I?,,_, , so that E,, fits into a push out 

square 

$.? I 
6-1 x G F E,,-I 

/L / x Id 
1. 1 (1.9) 

D,, x G __i E,,; 

the requisite G-action #,1: E,, x G + E,, and injection x,,: D,, + E,, are the action denoted 

above by 3, cf. ( 1.2), and the map denoted above by 2, cf. (I .3), respectively. Consider 

the union 

EC; = u 6, = u D,,, 
,1=-o n=O 

endowed with the weak topology. Since each E,, (and each D,,) carries 

generated topology, so does EG. Furthermore, the compactly generated 

the compactly 

product being 

taken, the space EC; inherits a (continuous) G-action 4: Ec; x G - EC and a (contin- 

uous) contraction I/I: CE(; + EC; from the $,,‘s and $,‘s, respectively. The G-action is 

free, and the orbit space BG = E(,/G equals the lean geometric realization INGI of 

the nerve of G. This is Steenrod’s result in [25]. 

2. The recursive description of the W-construction 

In [l], the first named author observed that the W-construction admits a recursive 

description of formally the same kind as (1.7) above, except that it is carried out in 

the category of based simplicial sets. This is among the key points of the paper. We 

shall explain it now. To elucidate the analogy between the two constructions, we first 

spell out the simplicial monads for group actions and conical contractions. 

Let K be a simplicial group. Let e denote the trivial simplicial group viewed at 

the same time as the simplicial point. For a simplicial set X endowed with a K-action 



4: X x K + X, we write 7 = 11:: X + X x K for the unit of the action; in each degree, 

it is given by q(x) = (x,e). Given an arbitrary simplicial set Y, right translation of K 

induces an obvious action ,U of K on Y x K. Much as before, in categorical language, 

the functor xK and natural transformations /L and PI constitute a monud (x K, p, q) 

in the category of simplicial sets and a K-action on a simplicial set X is an alqrhm 

structure on X over this monad. Moreover realization preserves monad and algebra 

structures. In other words: the realization of a K-action 4:X x K + X on a simplicial 

set X is a geometric action 141: 1x1 x IKl -+ /XI in the usual sense. Notice this involves 

the standard homeomorphism [ 171 between the realization IX x K( of the simplicial 

set X x K and the product 1x1 x IKl of the realizations (with the compactly generated 

topology). The homeomorphism between IX x Kl and /Xl x IKl is of course natural and 

relies on the fact that, for an arbitrary bisimplicial set, the realization of the diagonal is 

homeomorphic to the realization as a bisimplicial set, cf. [20, Lemma on p. 861. Note, 

however, that the simplicial CW-structure of the realization of X x K arises from the 

product CW-structure of l/XI x jKI only after suitable subdivision thereof [19, Satz 5, 

p. 3881. This reflects, of course, precisely the decomposition coming into play in the 

EilenberggZilber map. 

Recall that in the category of simplicial sets there are tno natural (reduced) cone 

constructions. The first one is defined by the simplicial smash product with the standard 

simplicial model d[l] of the unit interval. We shall say more about this in Section 4 

below. The recursive description of the W-construction crucially involves the second 

somewhat more economical cone construction which relies on the observation that an 

(17 + 1 )-simplex serves as a cone on an n-simplex. We reproduce this cone construction 

briefly; it differs from the one given in [4, p. 1131 by the order of face and degeneracy 

operators; our convention is forced here by our description of the W-construction with 

structure group acting from the right, cf. what is said in (2.6) below. 

Let X be a simplicial set. For j > 0, we shall need countably many disjoint copies 

of each X, which we describe in the following way: For j > 0, consider the Cartesian 

product X, x N with the natural numbers N. Let o be a point which we formally assign 

dimension - 1 and, given i E N, write X_!(i) = ((0, i)} so that each X_,(i) consists 

of a single element; next, for j > 0, let Xi(i) = X, x {i}. The unwducrd simpliciul 

cmw ?X on X is given by 

(EX),, =X,,(0)U...UX~(n)UX-,(n+ l), n > 0, 

with face and degeneracy operators given by the formulas 

di(x, i) = 
(dp, 9, jjn-i, 

(x, i - l), j > n - i, 

3,(x, i) = 
(.sp, i), ,j 5 n - i, 

(x, i + 1 ), j > 12 - i 

Notice that in these formulas n ~ i = dimx; in particular, 

d,(o,n + 1) = (o.n), sJo,n) = (o,n + l), 0 <,j <n. 



Let now (X, *) be a lx~.sr~l simplicial set. The unreduced simplicial cone ?{ *} of 

the simplicial point {*} is the simplicial interval, and the r-r~!uuced sirnpliciul cone CX 

is simply the quotient 

cx = i3/iz{*}. 

For each n > 0, its constituent (CX),, arises from the union X,,(O) U U X,(n) by 

identifying all (*, i) to a single point written *, the buse point of CX. The non- 

degenerate simplices of CX different from the base point look like (x, 0) and (x, I) 

where x runs through non-degenerate simplices of X. We write 11 = P&:X -+ CX 

for the unit induced by the assignment to x E X,, of (x,0) E X,,(O). A (simplicial) 

contraction is, then, a morphism $: CX + X of based simplicial sets satisfying 

I/? o 11 = Idx. 

The cone CX itself admits the obvious contraction 

/l = & CCX + CX. ((x,i)J) H (x,i +.i). 

A contraction $ is called conical provided 

We note that a geometric contraction in the sense of Section 1 above, being defined 

as an action of the associative monoid I, automatically satisfies the usual associativity 

law for an action. Under the present circumstances, the property of being conical 

corresponds to this associativity property. The contraction ~1.: of CX is conical; in 

categorical terms, the triple (C, ,u, rl) is a monad in the category of simplicial sets, and 

a conical contraction is an algebra structure in the category of simplicial sets over this 

monad, referred to henceforth as C-cllgehrcr structure on X. 

We now have the machinery in place to reproduce the crucial recursive description 

the W-construction: Define based simplicial sets and injections of based simplicial sets 

Y,, /(A r/, ii. , 23, if,, %tl 
Do iEo +D, -...-D,, +E,, -+D,,+I-~... (2.1) 

by induction on n together with conical contractions $n: CD,, - D,, and K-actions 

&: E,, x K --) E,, on each E,, from the riolzt in the following way: Let Do = e, with 

the obvious conical contraction t/10, let Eo = K, viewed as a based simplicial set in the 

obvious way, the right action $0 being translation, and let ~0 be the obvious morphism 

of based simplicial sets from Do to Eo. For n 2 I, define (D,,,e) to be the enhymnwnt 

to (E,,_ 1, e) of the contraction I,!+_ 1: CD,,_ 1 - D,,_I, that is, D,, is characterized by the 

requirement that the diagram 
ti,,& 

CD,,- I F D,,+I 

(‘2,,_ , 
I I (2.2) 

CL I __i 0, 



be a push out square of (based) simplicial sets; the composite of the unit ye from E,,_I to 

CE,,_, with the morphism CE,,_l + D,, of simplicial sets in (2.2) yields the requisite 

injection p,I-r : E,,_l + D,,, and the contraction t/+,-r and the conical contraction of 

CE,_, induce a conical contraction $,: CD, + D,,. Likewise, E,, is the enlurgement to 

D,, of the K-action $,,-I on E,,_I, that is, E,, is characterized by a push out square of 

based simplicial sets of the kind 

6 I 
E,,._ , x K _i E,,-I 

/L I x Id 
.1 .1 (2.3) 

D,, x K - 6,; 

the requisite K-action &,: E,, x K 4 E,, is induced by $,,-1 and the obvious K-action 

on D,, x K, and the requisite injection cx,,: D,, + E, is the composite of the unit with 

the morphism D,, x K 4 E,, of simplicial sets in (2.3). The limit 

WK = lim E,, = lim D,, 

inherits a K-action 4: WK x K + WK and conical contraction I/C CWK + WK from 

the &‘s and &‘s, respectively. The K-action is free, and the projection map to the 

quotient WK = WK/K yields the universal simplicial K-bundle 

or W-construction of K, cf. [I], with action of K from the right. 

For intelligibility, we explain some of the requisite details: A straightforward induc- 

tion establishes the following descriptions of the simplicial sets Dl; and EA: 

(Dkh, = {(io,ko,il,kl, . . . . k,-l,i,) 1 0 < / <k, i, 2 0, 

n = io + + if, k,, E K,,,+.,.+,\, 0 5 ,Y < /} / -, 

(EL),, = {(io,ko,il,k,,...,k,~,,i/,k,) ) 0 5 / 5 k, i, > 0, 

n = io + + it, k, t K,,,+.+,$, 0 5 s < 0 / -, 

where 

(..., iy,e,i+l ,... )-( . . . . i,+i,+~,... ). (.... k,y,O,k.s+, ,... )-( . . . . k.sk,,+I ,... ). 

Thus, for n >- 0, 

( WK ),, = { (kj(, 9 I’c;, , . . , k, ) / 0 <: ,jo < . < j, = PI and 

ki\EKjt\eil, O<S<~, k,,EK;}. 

From this, adding the requisite neutral elements wherever appropriate, we deduce the 

following more common explicit description: For II 2 0, 

(WK),, = K. x x K,,. 



with face and degeneracy operators given by the formulas 

do(x0, . ,&I) = (dOXl, . ., do-h, ). 

dj(X0 ,..., x,)=(x0 ,...) X,~*,.~,~,d,.u,,d,X,+ I,.... djXn), 1 Ij < n, 

Sj(XO,...,X,)=(XO,...,X,~I,e,.S,.~,,si",+l,...,s,.r,), O<jLn; 

further, (WK)o = {e} and, for n > I, 

(WK),, = Ko x ‘.’ x K,,_,, 

(2.4) 

with face and degeneracy operators given by the formulas 

do(x0, . . ..Xn-.)=(dox,....,doX,i_,), 

dJ(XO,...,X,I~I)=(XO,.~.rXj-?,B,-ld,X,,UI,Xjcl,...,djX~_~), 1 <j 5 n - 1, 

d&o,. .,X,-I ) = (x0,. . .,x,1-?), (2.5) 

so(e) = e E Ko, 

sj(XO,...,X,-1)=(X0 , . .,Xi-l.',",Xj,",Xit [,....AS.~X,~_I), O<j<n. 

Remark 2.6. Here preferred treatment is given to the lust face operator, as is done 

in [9, 121. This turns out to be the appropriate thing to do for principal bundles with 

structure group acting on the total space from the right and simplifies comparison 

with the bar construction. See for example what is said on p. 75 of 191. The formulas 

(2.4) and (2.5) arise from those given in (A.14) of [9] for a simplicial algebra by 

the obvious translation to the corresponding formulas for a simplicial monoid; they 

differ from those in [4, pp. 136 and 1611 where the constructions are carried out with 

structure group acting from the I@. 

3. The proof of the theorem 

The realization of a conical contraction $: CX d X of a based simplicial set (X,x0) 

is a geometric contraction ($1: CIX 1 -- IX 1 in th e sense reproduced in Section I above. 

In fact, the association 

(Ixl(to,. , tn), t) k (1(x. 1 )I(tto,. . ,tt,,, 1 - t>. x E x,, n 2 0, 

yields a homeomorphism from the reduced cone C]Xl on the realization IX/ to the 

realization ]CXl of the cone and, furthermore, the realizations of the unit q and C- 

algebra structure &: CCX 4 CX yield the geometric unit 1x1 + C]X] and geometric 

C-algebra structure ,L$, , : CCIX j ---f C/XI, that is, the realization preserves monad- and 

C-algebra structures. 

The proof of the theorem is now merely an elaboration of the observation that the 

realization functor 1.1 carries an action of a simplicial group to a geometric action of its 

realization, preserves reduced cones and, having a right adjoint (the singular complex 



functor), also preserves colimits. In fact, denote the corresponding sequence (1.7) of 

based topological spaces for the realization JKI by 

/i&4 
DnlKII”EOIKl-. . I;,lhlqI(, 

PM,,+, lKl L-1 IN>. 
(3.1) 

and, likewise, write 

%,K /lilK r,,K /AX A,+ I JY 
DOK-E(,K+. -E,,K +D,,+,K- . (3.2) 

for the corresponding sequence (2.1) in the category of based simplicial sets. Realiza- 

tion carries the sequence (3.2) to the sequence 

ID& - 
I~llKl IEi,Kl~, x,,llIENK,ly 

l~,,+,~ll”iiKI... (3.3) 

of based topological spaces. Now 

D& = e = l&K/, EolKI = IKI = IEoKI, 

and the map xolK 1 = lx& is the canonical inclusion. Let 

ro:DolKI - IDoK and po:EolKI 4 lEoKl 

be the identity mappings. Let n > 1 and suppose by induction that homeomorphisms 

7,:D,IKl - lD,Kl and p,:EilKl + IE,Kl, 

each p, being IKI-equivariant, have been constructed for ,j < t7, having the following 

properties: 

( I ) The diagrams 

Ej-, 1Kl 
if,- 5 IKl 
- D,IKI 

I’,- I .1 1 TI 
,E,_,KI lWiml~l 

- ID,Kl 

are commutative; 

D, I4 2 E,lKl 

1, i. 
p,KI 2 

1 I’: (3.4) 

IW 

(2) each ri identifies the realization l$+Kl: ICD,Kl + lD,K 1 of the conical contraction 

$,K: CDiK + D/K of simplicial sets with the geometric contraction *lKJ: CD,lKl - 

D,lKl; 
(3) each p, identifies the realization l4jK1: I(E~K) x KI + lEiKl of the simplicial 

K-action qh,K:(EiK)xK + E,K with the topological IKI-action $,JKI:(E,IKl)xlKl 4 

E,lKI. 
Consider the realization of (2.2); it is a push out square of topological spaces. 

Hence the maps 7,,_1 and p,,_~ induce a map T,, from D,,IKJ to lD,,KI, necessar- 

ily a homeomorphism, so that C~T,,_I], lt,,_ll,CJp,,_ll and IT.,~I yield a homeomor- 

phism of squares between the realization of (2.2) and (1.8) where (1.8) is taken 

with reference to G = IKI. Moreover, the homeomorphism T,, identifies the realization 

IW: IC&Kl + l&K1 of th e conical contraction $,,K: CD,,K + D,K of simphcial 



sets with the contraction 4,11(]: CD,, IK 1 - D,,lKl. Likewise the maps p,!_l and r,, in- 

duce a map ~1,~ from E,,IK to lE,,Kl. necessarily a IKl-equivariant homeomorphism, 

so that IP,~+I x LdKI, IP,,-I I, I T,~ x Idk I and lp,!I yield a homeomorphism of squares be- 

tween the realization of (2.3) and ( 1.9), where (I .9) is understood with reference to 

G = IK(. Moreover, the homeomorphism /I,~ is lK1-equivariant and identifies the real- 

ization l&K]: 1(&K) x K] - IE,,KI of the simplicial K-action &K: (E,,K) x K 4 E,,K 

with the topological lK]-action (/~,,]K~: (EJKI) x IKl --f E,IKl. The requisite diagrams 

(3.4) for j = IZ are manifestly commutative. This completes the inductive step. 

The limit 

p = limpI = lim 7,,: ElKI + 1 WKI 

is a IKI-equivariant homeomorphism; it identifies the principal lK]-bundles EIKI + 

B]Kj and IJVKI 4 (WK] as asserted and is plainly natural in K. This proves the 

theorem. 0 

4. The other cone construction 

The classifying space BIKl IS h omeomorphic to the realization of the nerve NK of 

K as a hisimpliciul set. (With reference to their obvious CW-structures, the two spaces 

are not isomorphic as CW-complexes, though.) On the other hand, the diagonal DNK is 

a simplicial set which does not coincide with the reduced W-construction WK, but its 

realization is homeomorphic to the realization of the nerve NK of K as a bisimplicial 

set since this is known to be true for an arbitrary bisimplicial set [20]. The purpose of 

this section is to clarify the relationships between the various spaces and constructions. 

As already pointed out, the construction (2.1) can be carried out with the simplicial 

smash product (.) A d[ I] instead of the reduced cone: The simplicial interval d[ l] 

carries a (unique) structure of a simplicial monoid having (1) as its unit, and hence 

we can talk about an action X x d[l] + X of d[ l] on a simplicial set X; such an 

action is a special kind of simplicial homotopy which “ends” at the identity morphism 

of X. The fact that the naive notion of homotopy of morphisms of simplicial sets is 

not an equivalence relation is not of significance here. Much as before, the simplicial 

interval d[ l] gives rise to a monad ( x d[ I], ,u, !I) in the category of simplicial sets and 

an action of d[l] on a simplicial set X is an d~~ehru structure on X over this monad. 

The huse point of d[l] is defined to be (0). For a based simplicial set (X,x0), we 

shall refer to an action $:X x d[ l] ---f X as a A[l]-contrcrction of X provided $ 

sends the base point (x0, 0) of X x n [ I] to xg and factors through the simpliciul smash 

product 

x A d[l] =X x d[l]/(X x {O} u {xc,} x d[l]). 

The latter is viewed endowed with the obvious base point, the image of X x (0) U 

{x0} x A[ I] in X A d[ 11. Abusing notation, the corresponding map from X A d[ l] to 

X will as well be denoted by I/I and referred to as a A[l]-contraction. Moreover we 
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write yI = yIX “‘I for the map the corresponding unit, which embeds X into X A A[ I] by 

sending a simplex x of X ;o (x, 1) E X A d[l]. The right action of A[ I] on X x A[1 ] 

induces a A [ II-contraction 

,;“‘:x A d[l] A d[l] +X A d[l] 

of X A A[ I]. In categorical language, the functor (.) A d[l] and natural transformations 

p and q constitute a monud in the category of simplicial sets, and a d[l]-contraction 

of a based simplicial set X is an ulgebru structure on X over this monad. 

Formally carrying out the construction (2.1) with the simplicial smash product 

(.) A A[ l] instead of the reduced cone we obtain the diagram 

of based simplicial sets and injections of based simplicial sets together with A[ I]- 

contractions &‘: 0; A A[l] + D:, and free K-actions &,: EL x K + EL. Its limit 

I f D = hm E,, = hm Dpz 

inherits a A[ l]-contraction I//: D A A[ I] --) D and a free K-action 4’: D x K * D. To 

explain the significance thereof, recall that the nerve construction yields a simplicial 

object 

K+ENK-NK (4.2) 

in the category of principal simplicial K-bundles which is natural for morphisms of 

simplicial groups. Here ENK and NK inherit structures of bisimplicial sets, one from 

the nerve construction and the other one from the simplicial structure of K, and the 

projection from ENK to NK is a morphism of bisimplicial sets; further, for each sim- 

plicial degree q 2 0 coming from the nerve construction, (4.2) amounts to a principal 

K-bundle 

while for each simplicial degree p > 0 of K = {Kp} itself, (4.2) comes down to the 

universal simplicial principal K,,-bundle 

K, + (ENK),>.* ---$ (NK),,; 

in particular, each (ENK),, is contractible in the usual sense. The diagonal bundle 

& DENK + DNK 

is manifestly a principal K-bundle having DENK contractible, and we have 

DENK = lim E,: = lim 0: 

as (right) K-set; moreover, the above morphism 6’: DENK A A[11 + DENK induces a 

simplicial contraction of DENK. 



Theorem 4.3. Thrre is N curzonicui honzPon~orphi.s,?l of principul jK j-bundles betwern 

the reuli-_ation ~DENK / i IDNK I of’ the diu<gonul bundle und thr rrolizution 

(WKI + IWK( of’thr W- constructiotz ,iAich is nrrturul in K. 

Proof. The classifying space Bl K 1 is the realization of NK as a bisimplicial set, and the 

same kind of remark applies to EIK 1 and the projection to B(KI. The already cited fact 

that, for an arbitrary bisimplicial set, the realization of the diagonal is homeomorphic 

to the realization as a bisimplicial set [20] implies the following statement. 

Theorem 4.4. Thrre is LI cunonirui I K I-equiauriutl t homromorphism between IDENK \ 
und E (K / und lwzce u amonicul holnc~omo~l,llis~~~ het~~wn ~DNK I und B IK I. Thrse 

holn~or?~orphi.sms uw nututxrl in K. 

We conclude from this that the stutrrmwt of’ the Thrown (in the Introduction) 

is ,fbrmull~ eyuicuknt to the stutcment of’ (4.3). In fact, the Theorem identifies the 

realization of the W-construction with the realization of the nerve as a bisimnpliciul set 
whereas (4.3) identifies the realization of the W-construction with the realization of 

the diagonal of the nerve. 

Remark 1. While the statement of (4.4) is obtained for free, the identifications just 

mentioned, in turn, are lzol obtained for free, as we have shown in this paper. 

Remark 2. For a based simplicial set (X, *), the realization JCXI of the cone CX is 

naturally homeomorphic to the realization 1X A d[ 111 of X A d[l]. In fact, a suitable 

subdivision of ICX( yields a realization of X A d[ I]. It is tempting to try to construct 

a homeomorphism between IDENK j and 1 WK 1 111 a combinatorial way by inductively 

constructing the requisite maps between the realizations of the constituents of (4.1) and 

of the corresponding terms in (2. I ) but we did not succeed in so doing. The problem 

is that the realization of the simplicial monoid /l[l] does not yield the geometric 

monoid structure on the interval I coming into play in Section 1 above, whence the 

realization of an action X X d[ I] - X of n[l] on a simplicial set X is root an I- 

action on the realization of X in the sense of Section 1. Rather, the realization of the 

simplicial monoid structure on A[ 11 yields the function from I x I to I which sends 

(a,h) to min(a,b). A suitable homeomorphism identifies this monoid structure with 

the more usual one considered in Section 1 above. For example, as pointed out by 

the referee, one could take the function which assigns (umax(a, b), bmax(a, b)) E I” 
to (a,h) E I’. Further, the monoid structure arising from the function min also gives 

rise to a monad in the category of spaces and with reference to it, the construction 

(1.7) can still be carried out; formally the same argument as that for the proof of our 

main result then identifies the limit (say) LK of the resulting sequence of spaces with 

the realization IDNK/ of DNK and, by virtue of (4.4), LK is naturally homeomorphic 

to BIKI. However we do not see how this homcomorphism may be obtained directly 

since we are unable to identify the monad in the category of spaces arising from the 



unit interval having the usual multiplication as monoid structure with the other monad 

arising from the function min as monoid structure. 
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